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PHYSICALLY NONLINEAR ELLIPSOIDAL INCLUSION

IN A LINEARLY ELASTIC MEDIUM

UDC 539.3I. Yu. Tsvelodub

This paper considers a physically nonlinear ellipsoidal inclusion in an elastic space loaded at infinity
by uniform external forces. Relations are obtained that link the stresses and strains at infinite points
of the medium and in the inclusion (in the latter, a homogeneous stress–strain state occurs). Some
examples, in particular, inclusions in the shape of oblate and prolate spheroids exhibiting nonlinear
creep properties, are discussed.
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Vakulenko and Sevost’yanov [1] proved the following statement, which generalizes classical Eshelby’ results
[2, 3]: if a linearly elastic space containing a physically nonlinear ellipsoidal inclusion (PNEI) is loaded by uniform
external forces at infinity, the stress–strained state (SSS) in the inclusion will be homogeneous. However, concrete
relations between the SSS of an elastic medium and the PNEI are not given in [1], although they are easy to
determine by comparing the corresponding relations obtained in [1, 2].

1. Linearly Elastic Space with a PNEI. We consider an elastic space with a PNEI loaded at infinity
by uniform stresses σ∞kl (k, l = 1, 2, 3). The coordinate system Ox1x2x3 is attached to the symmetry axes of the
ellipsoid, so that the equation of the boundary Ω separating the inclusion v∗ from the elastic region v has the form
x2

ka−2
k = 1 (a1 > a2 > a3). Here and below (unless otherwise specified), summation over repeated subscripts is

performed from 1 to 3. The strains of the medium and inclusion are considered small; on the surface Ω, the loads
and fields are continuous.

In the region v, Hooke’s law is valid:

εkl = aklmnσmn, σkl = bklmnεmn (k, l = 1, 2, 3), (1.1)

It can be written in componentless form

ε = a : σ, σ = b : ε (1.2)

(εkl, σkl, aklmn, and bklmn are components of the strain, stress, elastic compliance, and elastic modulus tensors)
and a and b are mutually inverse tensors.

The constitutive equations for the inclusion v∗ are written in general form

ε∗ = F (σ∗), σ∗ = G(ε∗), (1.3)

where F and G are nonlinear tensor operators acting on the stress tensors σ∗ and strain tensors ε∗. For (1.3), we
also use a componentwise form similar to (1.1).

In [1], the following expressions for the displacement vector components uk in the region v∗ ∪ v are obtained:

uk = u∞k +
∫
v∗

Φpq(ξ)Ukp,q(r − ξ) dv(ξ) (k = 1, 2, 3),
(1.4)

r = (x1, x2, x3) ∈ v∗ ∪ v, ξ = (ξ1, ξ2, ξ3) ∈ v∗

Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090.
Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 45, No. 1, pp. 84–91, January–February, 2004.
Original article submitted April 8, 2003.

0021-8944/04/4501-0069 c© 2004 Plenum Publishing Corporation 69



(in [1], the sign ahead of the integral in (1.4) is erroneously replaced by the opposite one), where U is the Green
tensor, u∞ is the displacement vector which is a linear function of r and corresponds to a uniform stress field σ∞

at infinity, and the subscript q after the comma denotes the derivative with respect to xq. In the region v∗, the
tensor Φ is defined in terms of the quantities introduced in (1.2) and (1.3) as follows:

Φ = σ∗ − b : ε∗, σ∗ = G(ε∗). (1.5)

It should be noted that Φ, σ∗, and ε∗ do not depend on the coordinates xk (k = 1, 2, 3).
At the same time, for the case where the inclusion undergoes a transformation accompanied by a “free”

homogeneous strain εT and σ∞ = 0, Eshelby [2] obtained relations similar to (1.4):

uk = −
∫
v∗

σT
pqUkp,q(r − ξ) dv(ξ) (k = 1, 2, 3). (1.6)

Here σT = b : εT . Substituting this equality into (1.6) and differentiating with respect to the coordinates, we find
the following strains in the region v∗:

ε∗ = S : εT . (1.7)

Formula (1.7) can be written in componentwise form

ε∗kl = SklmnεT
mn, 2Sklmn = −bpqmn

∫
v∗

[Ukp,ql(r − ξ) + Ulp,qk(r − ξ)] dv(ξ)

(k, l,m, n = 1, 2, 3), r, ξ ∈ v∗.
(1.8)

As shown in [2], the tensor S does not depend on the coordinates xk (k = 1, 2, 3) but is determined by the
geometry of the region v∗ and the elastic characteristics of the ambient medium v. Using (1.2), equality (1.7) can
be written as

ε∗ = P : σT , P = S : a. (1.9)

Comparing (1.4) and (1.6), we arrive at the conclusion that in the case of the PNEI considered, to find the
strains ε∗kl in the inclusion from formula (1.9), it is necessary to replace σT by the tensor −Φ from (1.5) and to add
the strain tensor on infinity ε∞ corresponding to the first term on the right side of (1.4). Thus, we obtain

ε∗ = ε∞ − P : (σ∗ − b : ε∗)

or, in more compact form,

ε∗ = ε∞ + S : (ε∗ − ε̃∗), ε∞ = a : σ∞, ε̃∗ ≡ a : σ∗. (1.10)

If in v∗, the strains comprise elastic and irreversible strains εN
kl (k, l = 1, 2, 3), the elastic characteristics of

the PNEI and the region v are identical (ε∗ = a : σ∗ + εN ) and σ∞ = 0, then relation (1.10) coincides with (1.7),
where εN plays the role of a free strain tensor.

For the case of an isotropic medium v, the components of the fourth rank tensor S in (1.7)–(1.10) are given
in [2], and the displacements of the medium are defined by formulas (1.4) for r ∈ v. The terms on the right side
of (1.4) are written in explicit form in [3], where εT

kl should b replaced by ε∗kl − aklmnσ∗mn (k, l = 1, 2, 3). Using
the same replacement, from the dependences given in [2], we obtain the components of the rotation vector in the
region v∗.

Relations (1.3) and (1.10) form a closed system from which the SSS of the PNEI, i.e., σ∗ = σ∗(t) and
ε∗ = ε∗(t) (t is time or a loading parameter) is determined from the known loading history at infinity σ∞ = σ∞(t).

Replacing the elastic constants aklmn (k, l,m, n = 1, 2, 3) in (1.1) and (1.10) by corresponding Volterra
operators [4], we obtain the relationships between the SSS in the inclusion and at infinity for the viscoelastic
region v with the PNEI.

2. Case of an Isotropic Region v. We assume that the elastic medium v is isotropic if relations (1.1)
have the form

Eεkl = (1 + ν)σkl − νσnnδkl, σkl = 2µεkl + λεnnδkl (k, l = 1, 2, 3),

2µ = E(1 + ν)−1, λ = Eν(1 + ν)−1(1− 2ν)−1,
(2.1)
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where δkl are the unit tensor components, E is Young’s modulus, ν is Poisson’s ratio, and λ and µ are Lamé’s
constant.

We note that by virtue of (1.10), the relations between ε̃∗kl and σ∗kl are similar to relations (2.1) with the
same elastic constants.

In this case, the components of the tensor S from (1.8) are defined as follows [2]:

Skkkk = Qa2
kIkk + RIk, Skkll = Qa2

l Ikl −RIk,

2Sklkl = 2Skllk = Q(a2
k + a2

l )Ikl + R(Ik + Il),

Q = 3/[8π(1− ν)], R = (1− 2ν)/[8π(1− ν)], (2.2)

Ik = 2πa1a2a3

∞∫
0

du

(a2
k + u)∆

, Ikk = 2πa1a2a3

∞∫
0

du

(a2
k + u)2∆

,

3Ikl = 2πa1a2a3

∞∫
0

du

(a2
k + u)(a2

l + u)∆
.

Here ∆2 = (a2
1 +u)(a2

2 +u)(a2
3 +u) (k, l = 1, 2, 3; k 6= l, no summation over k and l), and the remaining components

are Sklmn = 0.
The quantities Ik, Ikk, and Ikl from (2.2) are expressed in terms of elliptic integrals of the first and second

kind and satisfy the following relations [2]:

I1 + I2 + I3 = 4π, Ik1 + Ik2 + Ik3 = 4π/(3a2
k), a2

1Ik1 + a2
2Ik2 + a2

3Ik3 = Ik,

Ikl = Ilk = (Il − Ik)/[3(a2
k − a2

l )] (k 6= l, ak 6= al), (2.3)

3Ikl = Ikk (k 6= l, ak = al) (k, l = 1, 2, 3).

From these relations, using known values of I1 and I2, we obtain the remaining indicated quantities. The last
equality in (2.3) follows from (2.2). In particular, for an oblate spheroid (a1 = a2 = α, a3 = δα, and δ < 1),
according to [2], we have

I1 = I2 = I = 2πδ(1− δ2)−3/2[arccos δ − δ(1− δ2)1/2]. (2.4)

Then, from (2.3) we obtain

I3 = 4π − 2I, I11 = I22 = 3I12 =
3I − 4πδ2

4α2(1− δ2)
,

I13 = I23 =
4π − 3I

3α2(1− δ2)
, I33 =

4π(1− 3δ2) + 6Iδ2

3α2δ2(1− δ2)
.

(2.5)

Ignoring the quantity δ2 compared to unity (i.e., assuming δ2 � 1), from (2.3)–(2.5), we obtain

I1 = I2 = π2δ, I3 = 4π − 2π2δ, I11 = I22 = 3I12 = 3π2δ/(4α2),

I13 = I23 = (4π − 3π2δ)/(3α2), δ2α2I33 = 4π/3.
(2.6)

Equality (1.10) is conveniently written in matrix form if the corresponding strain tensor ε is treated as a
six-dimensional column vector f with the components f1 = ε11, f2 = ε22, f3 = ε33, f4 = ε12, f5 = ε13, and f6 = ε23

and the tensor S is treated as a 6× 6 matrix s whose elements skl are defined as follows: skl = Skkll (k, l = 1, 2, 3;
no summation over k and l), s44 = 2S1212, s55 = 2S1313, s66 = 2S2323, and the remaining skl are equal to zero.
Then, relation (1.10) becomes

f∗k = f∞k + skl(f∗l − f̂∗l ) (k = 1, 2, . . . , 6), (2.7)

where the summation over l is performed from 1 to 6.
Substituting (2.6) into (2.2), for the elements of the matrix s, we obtain

s11 = s22 = (13− 8ν)δ0, s12 = s21 = (8ν − 1)δ0, s13 = s23 = 4(2ν − 1)δ0,
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s31 = s32 = ν(1− ν)−1 − 4(1 + 4ν)δ0, s33 = 1− 8(1− 2ν)δ0, (2.8)

s44 = 2(7− 8ν)δ0, s55 = s66 = 1− 8(2− ν)δ0, δ0 ≡ πδ/[32(1− ν)].

For a prolate spheroid (a1 = α, a2 = a3 = δα, and δ < 1) according to [2], we have

I2 = I3 = I = 2πδ−1(δ−2 − 1)−3/2[δ−1(δ−2 − 1)1/2 − arcosh δ−1].

Then, from (2.3), we obtain

I1 = 4π − 2I, I11 =
4π(3− δ2)− 6I

3α2(1− δ2)
, I22 = I33 = 3I23 =

4π − 3Iδ2

4α2δ2(1− δ2)
,

I12 = I13 =
3I − 4π

3α2(1− δ2)
.

(2.9)

Since I = 2π(1 + δ2 ln δ) in the order of δ2, from (2.9) for δ2 � 1, we obtain (retaining terms of the order of
δ1 = −δ2 ln δ and ignoring δ2 compared to unity)

I1 = 4πδ1, I2 = I3 = 2π(1− δ1), I11 = 4πδ1/α2,

δ2α2I22 = δ2α2I33 = 3δ2α2I23 = π, I12 = I13 = 2π(1− 3δ1)/(3α2).

Substituting these equalities into (2.2), we obtain

s11 =
2− ν

1− ν
δ1, s12 = s13 = − 1− 2ν

2(1− ν)
δ1, s21 = s31 =

ν − (1 + ν)δ1

2(1− ν)
,

s22 = s33 =
5− 4ν − 2(1− 2ν)δ1

8(1− ν)
, s23 = s32 =

4ν − 1 + 2(1− 2ν)δ1

8(1− ν)
, (2.10)

s44 = s55 =
1
2
− (1 + ν)δ1

2(1− ν)
, s66 =

3− 4ν − 2(1− 2ν)δ1

4(1− ν)
, δ1 ≡ −δ2 ln δ.

According to [2], in the case of an elliptic cylinder (a3 →∞), we have

I1 = 4πa2(a1 + a2)−1, I2 = 4πa1(a1 + a2)−1, I3 = 0, I12 = 4π/[3(a1 + a2)2],

Ikk = 4π/(3a2
k)− I12 (k = 1, 2), Ik3 = 0 (k = 1, 2, 3).

In this case, relations (1.10) coincide with those obtained by a different method in [5, 6] for æ = 3 − 4ν, which
corresponds to plane deformation.

Below we give formulas for a PNEI which degenerates into:
(a) an elliptic thin plate (a1 > a2, a3 → 0), where Ik = Ikl = 0 (k, l = 1, 2), I3 = 4π, a2

kIk3 = 4π/3
(k = 1, 2, 3; no summation over k) and the quantities skl are written in the form of (2.8) for δ0 = 0;

(b) a needle (a1 = α, a2 = a3 = δα, δ → 0), where skl is determined from (2.10) for δ1 = 0.
Substituting (2.8) for δ0 = 0 and (2.10) for δ1 = 0 in (2.7) and taking into account the relations between ε̃∗kl

and σ∗kl (and the relations between ε∞kl and σ∞kl ) of the form of (2.1), after simple rearrangements, we obtain:
— for case (a),

ε∗kl = ε∞kl (k, l = 1, 2), σ∗k3 = σ∞k3 (k = 1, 2, 3); (2.11)

relations similar to (2.11) also hold in the plane problem with an elliptical inclusion degenerating into a slot [6];
— for case (b),

ε∗11 = ε∞11, ε∗1k + ε̃∗1k = 2ε∞1k (k = 2, 3), (3− 4ν)ε̃∗23 + ε∗23 = 4(1− ν)ε∞23,

E(ε∗22 − ε∗33) = (1 + ν)[4(1− ν)(σ∞22 − σ∞33)− (3− 4ν)(σ∗22 − σ∗33)], (2.12)

E(ε∗22 + ε∗33) = 2(σ∞22 + σ∞33 − νσ∞11)− (1 + ν)(σ∗22 + σ∗33).

The last of equalities (2.11) (for k = 3) and equalities (2.12) are valid for ν 6= 0.5 and ν → 0.5 because the
right and left sides of the original relations contain the factor 1− 2ν.
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3. Some Examples. We consider the case of an isotropic PNEI whose strains comprise elastic and creep
strains ε∗ckl , so that the original equations (1.3) have the form

ε∗ = a∗ : σ∗ + ε∗c,

where a∗ is the elastic compliance tensor, which depends only on two constants E∗ and ν∗. For the creep strain
rates, we obtain the relations [4]

η∗kl ≡ ε̇∗ckl = 3B1σ
∗n−1
i σ∗0kl (1− ω)−m, σ∗0kl = σ∗kl − (1/3)σ∗nnδkl (k, l = 1, 2, 3),

ω̇ = B2σ
∗p
i (1− ω)−m, σ∗2i = (3/2)σ∗0kl σ

∗0
kl ,

(3.1)

where σ∗i is the stress intensity, 0 6 ω 6 1 is a damage parameter, which is equal to zero in the unstrained state
and to unity at the moment of fracture, and B1, B2, m, n, and p are positive constants.

Relations (3.1) describe isothermal creep and failure processes for softening materials. In particular, for
ω ≡ 0, relations (3.1) correspond to nonlinear viscous flow of undamaged materials.

We assume that at the time t = 0, stresses σ∞kl are applied at infinity and then remain constant. At t < 0,
the entire region v∗ ∪ v was in a natural unstrained state; therefore, ε∗ckl |t=0 = 0 (k, l = 1, 2, 3) and ω|t=0 = 0.

We assume that the elastic characteristics of the medium and the inclusion are identical, i.e., E∗ = E,
ν∗ = ν. (This assumption is not significant because the case E∗ 6= E and ν∗ 6= ν does not involve serious difficulties
but only leads to more cumbersome expressions.) Then, as noted above, ε∗− ε̃∗ = ε∗c and since ε∗c|t=0 = 0, relation
(1.10) leads to

σ∗kl

∣∣∣
t=0

= σ∞kl (k, l = 1, 2, 3). (3.2)

In this case, relation (2.7) becomes

f∗ck − sklf
∗c
l + f̂∗k = f∞k (k = 1, 2, . . . , 6). (3.3)

As in Sec. 2, we consider the following inclusions: 1) inclusions in the shape of an oblate spheroid; 2) inclusions
in the shape of a prolate spheroid.

1. Let σ∞11 = σ∞22 = σ0, σ∞33 = σ30, and σ∞kl = 0 (k, l = 1, 2, 3; k 6= l). From (3.3) and (2.8) it follows that
at t > 0, the equalities σ∗11 = σ∗22 and σ∗kl = 0 (k, l = 1, 2, 3; k 6= l) are satisfied. We introduce the designations
σ∗11 = σ∗22 = σ1(t) and σ∗33 = σ3(t). Next, from (3.1) we find that σ∗i = |σ1 − σ3|, and then

ḟ∗c1 = ḟ∗c2 = −ḟ∗c3 /2 = F1(σ1 − σ3)(1− ω)−m, ω̇ = F2(1− ω)−m, (3.4)

F1 = B1|σ1 − σ3|n−1, F2 = B2|σ1 − σ3|p.

Substituting (2.1), (2.8), and (3.4) into equalities (3.3) differentiated with respect to t, we obtain

σ̇1 = −AF1(σ1 − σ3)(1− ω)−m, σ̇3 = BF1(σ1 − σ3)(1− ω)−m,

ω̇ = F2(1− ω)−m, A = E[(1− ν)−1 − 4(8ν + 5)(1 + ν)−1δ0], (3.5)

B = 8E(1 + ν)−1(1− 2ν)δ0.

The first two equations in (3.5) are obtained by reducing the right and left sides by a factor of 1− 2ν [as in (2.11)
and (2.12)].

By virtue of (3.2), the initial conditions for system (3.5) are written as

σ1(0) = σ10, σ3(0) = σ30, ω(0) = 0. (3.6)

[We note that in a more general case, where, for example, ν = ν∗ but E 6= E∗, the left sides of the first and second
equations of. (3.5) include the terms (1−E/E∗){(1− 12δ0)σ̇1− [ν(1− ν)−1− 4(4ν +1)δ0]σ̇3} and 8(1−E/E∗)(1−
2ν)δ0(σ̇1 + σ̇3), respectively.]

From Eqs. (3.5) and (3.6), it follows that

Bσ1 + Aσ3 = Bσ10 + Aσ30. (3.7)
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Subtracting the second equation of (3.5) from the first equation and converting from t to the new variable
ω = ω(t), which is an increasing function of t, we have

(σ1 − σ3)′ = −(A + B)B1B
−1
2 σ∗n−p−1

i (σ1 − σ3), σ∗i = |σ1 − σ3| (3.8)

(the prime denotes differentiation with respect to ω).
Multiplying both sides of (3.8) by σ1 − σ3 and taking into account that (σ1 − σ3)′(σ1 − σ3) = σ∗′i σ∗i , for σ∗i

we obtain the following equation (similar to that considered in [7] for the case of instantaneous tension of a rod at
t = 0 with subsequent conservation of its strain):

σ∗′i + (A + B)B1B
−1
2 σ∗n−p

i = 0. (3.9)

From (3.9), we have

σ∗i = σ∗i0f0(ω), f0(ω) = [1− C(p− n + 1)ω]1/(p−n+1),

C(σ∗i0) = (A + B)B1B
−1
2 σ∗n−p−1

i0 , σ∗i0 = |σ10 − σ30|.
(3.10)

Substituting (3.10) into (3.8) and integrating, we obtain

σ1 − σ3 = (σ10 − σ30)f0(ω). (3.11)

From (3.10) and the last equation in (3.5), taking into account the third equality in (3.6), we find t as a function
of ω:

t = B−1
2 σ∗−p

i0

ω∫
0

[1− C(p− n + 1)ω]−p/(p−n+1)(1− ω)m dω,

which is the reverse of the function ω = ω(t). Knowing the function ω = ω(t), from (3.7) and (3.11), we find
σ1 = σ1(t) and σ3 = σ3(t).

From (3.9) or (3.10) it follows that with time, i.e., as the value of ω increases, there is a reduction (relaxation)
of the stress intensity σ∗i because A + B = E[(1− ν)−1 − 12(1 + 4ν)(1 + ν)−1δ0] > 0 since δ0 � 1. Is failure of the
PNEI, i.e., attainment of the value ω = 1 possible under these conditions? In [7], it is shown that this is possible
if C(p − n + 1) < 1) or C(p − n + 1) = 1 and m + 1 − Cp > 0. In the remaining cases, t∗ → ∞ (t∗ is the time to
failure).

Since A + B ∼ E(1 − ν)−1, we have C ∼ (1 − ν)−1ε∗(σ∗i0)/εe(σ∗i0), where ε∗(σ∗i0) = B1B
−1
2 σ∗n−p

i0 is the
creep strain at the moment of failure under uniaxial tension by a stress equal to σ∗i0 and εe(σ∗i0) = σ∗i0E

−1 is the
corresponding elastic strain. For most real media, ε∗ > εe; therefore, C > 1, and for viscous materials, C � 1.
Then, from the inequality C(p − n + 1) < 1, it follows that p < n + C−1 − 1 < n, which corresponds to friable
materials [7]. In this situation, failure of a viscous PNEI for which p > n is impossible.

If, for example, σ∞13 = σ0 (or σ∞23 = σ0), σ0 = const, σ0 > 0, and the remaining σ∞kl are equal to zero, then
from (3.3) and (2.8) it follows that the single stress component different from zero σ∗kl is the component σ∗13 = σ∗13(t),
which satisfies the equation

σ∗′13 + B0σ
∗n−p
13 = 0, B0 = 8(2− ν)(1 + ν)−1EB1B

−1
2 3nδ0, (3.12)

and

σ∗13(0) = σ0. (3.13)

By analogy with (3.10), from (3.12) and (3.13) we obtain

σ∗13 = σ0[1−B0(p− n + 1)σn−p+1
0 ω]1/(p−n+1).

In this case, the condition of finiteness of the time t∗ becomes

B0(p− n + 1)σn−p−1
0 < 1, (3.14)

which is also possible for a viscous inclusion material for which p > n and B3 ≡ EB1B
−1
2 σn−p−1

0 � 1. As follows
from (3.14), in order that these conditions be satisfied, it suffices that the inequalities 0 < p− n < B−1

0 σp−n+1
0 − 1

hold, which is the case for B−1
0 σp−n+1

0 > 1, i.e., for 8(2−ν)(1+ν)−13nB3δ0 < 1. The last inequality can be satisfied
(in spite of the fact that B3 � 1) because δ0 � 1.
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2. Let σ∞11 = σ10, σ∞22 = σ∞33 = σ20, and σ∞kl = 0 (k, l = 1, 2, 3; k 6= l). From (2.3) and (2.10), it follows that
at t > 0, the following equalities hold: σ∗22 = σ∗33 and σ∗kl = 0 (k, l = 1, 2, 3; k 6= l). We introduce the designations
σ∗11 = σ1(t) and σ∗22 = σ∗33 = σ2(t). Next, from (3.1) we find that σi = |σ2 − σ1| and then

ḟ∗c2 = ḟ∗c3 = −ḟ∗c1 /2 = B1|σ2 − σ1|n−1(σ2 − σ1)(1− ω)−m,

ω̇ = B2|σ2 − σ1|p(1− ω)−m.
(3.15)

Substituting (2.1), (2.10), and (3.15) into equalities (3.3) differentiated with respect to ω and reducing by
1− 2ν, we obtain the system

(1− ν2)σ′1 = −E[ν − 2− (ν − 5)ε]F3, (1− ν2)σ′2 = −E(1− 2ν)(1− 2ε)F3,

F3 = B1B
−1
2 |σ2 − σ1|n−p−1(σ2 − σ1)

with the initial conditions σ1(0) = σ10 and σ2(0) = σ20. Its solution is similar to that given above for (3.5) and
(3.6). In particular, the condition of finiteness of the time t∗ has the form

C1(p− n + 1) < 1, C1 = E(1− ν2)−1[3(1− ν)− (7− 5ν)ε]B1B
−1
2 σ∗n−p−1

i0 ,

σi0 = |σ20 − σ10|.

From this it follows that C1 ∼ 3(1 + ν)−1ε∗(σ∗i0)/εe(σ∗i0) > 1 (ε∗ and εe are defined above); therefore, p

< n + C−1
1 − 1 < n, which corresponds to friable materials.

A similar situation arises when only one of the components σ∞kl (k, l = 1, 2, 3 is different from zero; k 6= l).
In this case, as follows from (2.10), the corresponding equation of the form (3.12) does not contain a small factor
at σ∗n−p

kl , and, therefore, condition (3.14) (i.e., t∗ < ∞) cannot be satisfied for the viscous inclusion material.
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